Phase 2B Design Considerations
Assessing Dose response modeling

Bob Noble



Power: The probability that a statistically significant outcome results for a
given effect size

Type | error rate: The power when there is no effect

Factors that impact the power

1. Effect size: Larger effects easier to detect
2. Sample size: More data increases power
3. Variability of data: High variability (noisy data) decreases power



Some Mathematical Facts of Life

Less
power Non-parametric (Rank based tests)
Separate variance t-test Common GSK pair-wise
/ Dose Ranging study
@d variance t-test
More Model based mean estimation
power

Bayesian model based estimates mean estimation




Post-operative nausea and vomiting (PONV) often occurs following local,
regional, or general anesthesia and is the most frequently reported
patient complaint following anesthesia.

PONV is often of greater concern to patients than is the avoidance of
post-operative pain .

In addition to anxiety and discomfort, PONV can lead to complications
such as fluid and electrolyte imbalances, surgical wound dehiscence,
aspiration of vomitus, and/or severe pulmonary morbidity that can lead
to delayed discharge from the recovery area or unscheduled hospital
admission.



Emesis rate for Ondansetron is between 45-55%.

It is expected that 140 subjects will be randomized to detect a
20% delta in Complete Response between one or more doses of
Investigational Product compared to 4 mg Ondansetron.

Case 1: Comparison of success rate to a constant (0.5)
a. Pair-wise
b. Model based (logistic regression)

Case 2: Comparison of success rate to Ondansetron arm
a. Pair-wise
b. Model based (logistic regression)
c. Bayesian model based (logistic regression)



Hyo: p=0.5; Hi:p>0.5

Power (OC) Curve

Power =91%

Power = 79%
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Estimated precision of single dose arm
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Estimated model based precision of a dose arm
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Bottom line

var(z,) < var(p,)

Translation

 Estimation from model based results link multiple doses.

* Information is shared between doses.

* Increased information decreases uncertainty (i.e. variability)
 Estimators with less variability result in more powerful comparisons



Pair-wise Comparison of rate > 0.5
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18 mg = minimum efficacious dose by pair-wise comparisons
8.3 mg = minimum efficacious dose by model based comparisons



Pair-wise Comparisons (Step down post hoc comparison to control Type | error rate)

Ondansetron

Note: Many approaches to control type | error rate due to multiple
comparisons (Bonferonni, Dunnett, Step-down REGWQ)



Pair-wise comparisons

Comparison of IP to Ondansetron

HO: pDose = pControI; Hl: pDose > pControI

Comparison of Investigational Pr&%o 0.5
Ho: Ppose = 0.5; Hi: Ppose > 0.5
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Model based comparisons

Comparison of IP to Ondansetron

HO: pDose = pControI; Hl: pDose > pControI

Comparison of Investigational Pr&%tto 0.5
Ho: Ppose = 0.5; Hi: Ppose > 0.5
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Model based comparison of IP to Ondansetron

HO: pDose = pControI; Hl: pDose > pControI

Pair-wise comparison of IP to Ondansetron

HO: pDose = pControI; Hl: pDose > pControI

Small power difference.
Model based approach
better estimates the IP
means but the noise from
the Ondanestron arm
overwhelms the benefits!
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Side Track: Bayesian Methodology

Provides a mathematical approach to incorporate knowledge/beliefs about population
parameters to create better estimates

A review of the clinical literature supports “Emesis rate for Ondansetron is between 45-55%.”

Statistician translates this to mean “p.,.+o ~ Beta(125.6, 101.9)”
Allocation 20:40:40:40 (Ondansetron: 6mg IP : 12mg IP: 18mg IP)

Mathematically, Bayesian methods adds some bias to the estimate greatly reduce its
variance

MSE(p, p) = var(p) +bias*(p, p)

How “good” an unbiased estimator (e.g. MLE) can be is limited by the Kramer-Rao lower
bound. Biased estimators can do better than this lower bound.



Bayesian Modeling
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Properties of Bayes Estimates
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“A good Bayesian will always do better than a non-Bayesian, but a bad
Bayesian will get clobbered.” —Herman Rubin



How is information gained?

Unbiased but not precise Biased but precise
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Prior information adds Bias but reduces Variance of estimates.
Mean Squared Error = Variance + Bias?

Goal: To make use of what is known to create better estimates

17



Bayesian model based comparison of IP to Ondansetron

HO: pDose = pControI; Hl: pDose > pControI

Model based comparison of IP to Ondansetron
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Summary of all Power Curves

Probability to Successfully Identify any Dose
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Less
power

Pair-wise comparison to Ondansetron

Model based comparison to Ondansetron

i .
More
power

Bayes model based comparison to Ondansetron

—Medelbased-comparisenteacenstant

A positive comparator arm is necessary for AE reporting, etc.

140 Patients in Bayesian model based = 340 Pair-wise comparison design



It was believed the dose-response may not be strictly increasing because high doses
may actually cause PONV.

Piecewise linear logistic model
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Fully Bayesian approach with non-informative priors
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Estimated efficacy rate

Variance components
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4mg Ondansetron 19 59
Analysis of 129 patients has 6mg IP 24 25
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24mg IP 20 56

36mg IP 21 24



A study objective: Assess the probability that dose “x” of IP is at least 20%
better than Ondansetron.

P(p, > p, +0.2] x,data)

Dose response with 90% CI limits Clinically relevant effect with 90% CI limits
0.9 0.2 ¢
0.8
No _ﬂ_/ 0.1
0.7 — o
g 06 _,_,....--—-"""""rf 8 n
o 0.5 c
W -—'_.__'_—_'_,_,.
E.'M T _g -0.1
g 3
% 03 c
@
5 02
0.2 (-
@)
0.1 | -0s
(o
. =
5 12 18 24 30 36
0.4
Investigational Product (mg) Investigational Product (mg)




Probability
o o o o o o o o o
= %] e ] iy ] T =l L] el =

]

[=)]

12

18
IP (mg)

24

30

36

Probability of
superiority

P(p, > po |%, data)

Probability of clinically
meaningful / payer
reimbursable effect

P(p, > p, +0.2 | x, data)



Critical Skills for Statisticians

1. Communication
1. Obtain relevant information from team
2. Relay options and context back to team

2. Technical theoretical skills
1. What aspects of an approach are of critical importance?
2. How can we differentiate between approaches?
3. Many tools in the toolkit makes options

3. Programming skills
1. Many innovative approaches are not available as drop down menu
options



